Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
NMR Biomed ; 34(2): e4435, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33111456

RESUMO

The goal of this study was to evaluate the accuracy, reproducibility, and efficiency of a 31 P magnetic resonance spectroscopic fingerprinting (31 P-MRSF) method for fast quantification of the forward rate constant of creatine kinase (CK) in mouse hindlimb. The 31 P-MRSF method acquired spectroscopic fingerprints using interleaved acquisition of phosphocreatine (PCr) and γATP with ramped flip angles and a saturation scheme sensitive to chemical exchange between PCr and γATP. Parameter estimation was performed by matching the acquired fingerprints to a dictionary of simulated fingerprints generated from the Bloch-McConnell model. The accuracy of 31 P-MRSF measurements was compared with the magnetization transfer (MT-MRS) method in mouse hindlimb at 9.4 T (n = 8). The reproducibility of 31 P-MRSF was also assessed by repeated measurements. Estimation of the CK rate constant using 31 P-MRSF (0.39 ± 0.03 s-1 ) showed a strong agreement with that using MT-MRS measurements (0.40 ± 0.05 s-1 ). Variations less than 10% were achieved with 2 min acquisition of 31 P-MRSF data. Application of the 31 P-MRSF method to mice subjected to an electrical stimulation protocol detected an increase in CK rate constant in response to stimulation-induced muscle contraction. These results demonstrated the potential of the 31 P-MRSF framework for rapid, accurate, and reproducible quantification of the chemical exchange rate of CK in vivo.


Assuntos
Creatina Quinase Forma MM/metabolismo , Membro Posterior/diagnóstico por imagem , Proteínas Musculares/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Trifosfato de Adenosina/metabolismo , Animais , Membro Posterior/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Masculino , Camundongos Endogâmicos C57BL , Fósforo , Reprodutibilidade dos Testes
2.
Australas J Dermatol ; 60(2): e145-e147, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30191557

RESUMO

Cytomegalovirus (CMV) infection represents a major cause of morbidity and mortality in immunocompromised hosts. Skin ulceration is a rare manifestation of tissue-invasive disease, with the anogenital region being the most typical site of involvement. We present a case of CMV ulceration on the right leg occurring 16 years following renal transplantation and 1 year after adjuvant radiotherapy for a Marjolin ulcer at this site. We suggest radiotherapy may provide a mechanism for local reactivation of the virus in the skin of seropositive patients.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Infecções por Citomegalovirus/diagnóstico , Úlcera da Perna/virologia , Neoplasias Cutâneas/radioterapia , Transplantados , Idoso , Anticorpos Antivirais/sangue , Carcinoma de Células Escamosas/cirurgia , Cicatriz/patologia , Citomegalovirus/imunologia , Humanos , Hospedeiro Imunocomprometido , Imunoglobulina G/sangue , Imunossupressores/uso terapêutico , Transplante de Rim , Masculino , Radioterapia Adjuvante , Neoplasias Cutâneas/cirurgia
3.
Magn Reson Med ; 80(6): 2681-2690, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29744935

RESUMO

PURPOSE: The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping in DCE-MRI studies in mice. METHODS: The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T1 and T2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. RESULTS: The T1 and T2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T1 and T2 mapping with 2-minute temporal resolution in DCE-MRI studies. CONCLUSION: Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Disprósio/química , Gadolínio/química , Glioblastoma/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Lineares , Camundongos , Camundongos Nus , Transplante de Neoplasias , Imagens de Fantasmas
4.
Magn Reson Med ; 79(4): 2176-2182, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28796368

RESUMO

PURPOSE: The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. METHODS: As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T1 ) and transverse relaxation time (T2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T1 and T2 mean and standard deviation, were compared between the two methods (n = 5). RESULTS: RIPE-MRF showed significant ANR reductions in regions of pulsatility (P < 0.005) and respiratory motion (P < 0.0005). RIPE-MRF also exhibited improved precision in T1 and T2 measurements in comparison to the SC-MRF method (P < 0.05). The RIPE-MRF and SC-MRF methods displayed similar mean T1 and T2 estimates (difference in mean values < 10%). CONCLUSION: These results show that the RIPE-MRF method can provide effective motion artifact suppression with minimal impact on T1 and T2 accuracy for in vivo small animal MRI studies. Magn Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Algoritmos , Anestesia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Movimento (Física) , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes
5.
NMR Biomed ; 30(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28915341

RESUMO

The purpose of this work was to develop a 31 P spectroscopic magnetic resonance fingerprinting (MRF) method for fast quantification of the chemical exchange rate between phosphocreatine (PCr) and adenosine triphosphate (ATP) via creatine kinase (CK). A 31 P MRF sequence (CK-MRF) was developed to quantify the forward rate constant of ATP synthesis via CK ( kfCK), the T1 relaxation time of PCr ( T1PCr), and the PCr-to-ATP concentration ratio ( MRPCr). The CK-MRF sequence used a balanced steady-state free precession (bSSFP)-type excitation with ramped flip angles and a unique saturation scheme sensitive to the exchange between PCr and γATP. Parameter estimation was accomplished by matching the acquired signals to a dictionary generated using the Bloch-McConnell equation. Simulation studies were performed to examine the susceptibility of the CK-MRF method to several potential error sources. The accuracy of nonlocalized CK-MRF measurements before and after an ischemia-reperfusion (IR) protocol was compared with the magnetization transfer (MT-MRS) method in rat hindlimb at 9.4 T (n = 14). The reproducibility of CK-MRF was also assessed by comparing CK-MRF measurements with both MT-MRS (n = 17) and four angle saturation transfer (FAST) (n = 7). Simulation results showed that CK-MRF quantification of kfCK was robust, with less than 5% error in the presence of model inaccuracies including dictionary resolution, metabolite T2 values, inorganic phosphate metabolism, and B1 miscalibration. Estimation of kfCK by CK-MRF (0.38 ± 0.02 s-1 at baseline and 0.42 ± 0.03 s-1 post-IR) showed strong agreement with MT-MRS (0.39 ± 0.03 s-1 at baseline and 0.44 ± 0.04 s-1 post-IR). kfCK estimation was also similar between CK-MRF and FAST (0.38 ± 0.02 s-1 for CK-MRF and 0.38 ± 0.11 s-1 for FAST). The coefficient of variation from 20 s CK-MRF quantification of kfCK was 42% of that by 150 s MT-MRS acquisition and was 12% of that by 20 s FAST acquisition. This study demonstrates the potential of a 31 P spectroscopic MRF framework for rapid, accurate and reproducible quantification of chemical exchange rate of CK in vivo.


Assuntos
Creatina Quinase/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Trifosfato de Adenosina/química , Animais , Fosfocreatina/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Razão Sinal-Ruído
7.
J Magn Reson Imaging ; 44(2): 375-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26854752

RESUMO

PURPOSE: To develop and prove preliminary validation of a fast in vivo T2 mapping technique for mouse heart. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) experiments were performed on a 7T animal scanner. The standard Carr-Purcell-Meiboom-Gill (CPMG) sequence was modified to minimize the effect of stimulated echoes for accurate T2 quantification. The acquisition was further accelerated with the compressed sensing approach. The accuracy of the proposed method was first validated with both phantom experiments and numerical simulations. In vivo T2 measurement was performed on seven mice in a manganese-enhanced MRI study. RESULTS: In phantom studies, T2 values obtained with the modified CPMG sequence are in good agreement with the standard spin-echo method (P > 0.05). Numerical simulations further demonstrated that with the application of the compressed sensing approach, fast T2 quantification with a spatial resolution of 2.3 mm can be achieved at a high temporal resolution of 1 minute per slice. With the proposed technique, an average T2 value of 25 msec was observed for mouse heart at 7T and this number decreased significantly after manganese infusion (P < 0.001). CONCLUSION: A rapid T2 mapping technique was developed and assessed, which allows accurate T2 quantification of mouse heart at a temporal resolution of 1 minute per slice. J. Magn. Reson. Imaging 2016;44:375-382.


Assuntos
Algoritmos , Técnicas de Imagem Cardíaca/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Animais , Ventrículos do Coração , Aumento da Imagem/métodos , Masculino , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Opt Express ; 18(21): 22324-38, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941133

RESUMO

We compared image restoration methods [Richardson-Lucy (RL), Wiener, and Next-image] with measured "scatter" point-spread-functions, for removing subsurface fluorescence from section-and-image cryo-image volumes. All methods removed haze, delineated single cells from clusters, and improved visualization, but RL best represented structures. Contrast-to-noise and contrast-to-background improvement from RL and Wiener were comparable and 35% better than Next-image. Concerning detection of labeled cells, ROC analyses showed RL ≈Wiener > Next-image >> no processing. Next-image was faster than other methods and less prone to image processing artifacts. RL is recommended for the best restoration of the shape and size of fluorescent structures.


Assuntos
Biotecnologia/métodos , Diagnóstico por Imagem/métodos , Congelamento , Microscopia de Fluorescência/métodos , Óptica e Fotônica , Algoritmos , Animais , Criopreservação , Proteínas de Fluorescência Verde/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Microesferas , Modelos Estatísticos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...